About the Project

ps老虎机游戏【打开网址∶3399yule.com】ps网上博彩平台推荐,ps平台官网: 3399yule.com】ps电子老虎机游戏

AdvancedHelp

Did you mean ps老虎机游戏【打开网址∶33929yule.com】ps网上博彩平台推荐,ps平台官网: 33929yule.com】ps电子老虎机游戏 ?

(0.002 seconds)

1—10 of 15 matching pages

1: 30.4 Functions of the First Kind
The eigenfunctions of (30.2.1) that correspond to the eigenvalues λ n m ( γ 2 ) are denoted by 𝖯𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , . …the sign of 𝖯𝗌 n m ( 0 , γ 2 ) being ( 1 ) ( n + m ) / 2 when n m is even, and the sign of d 𝖯𝗌 n m ( x , γ 2 ) / d x | x = 0 being ( 1 ) ( n + m 1 ) / 2 when n m is odd. When γ 2 > 0 𝖯𝗌 n m ( x , γ 2 ) is the prolate angular spheroidal wave function, and when γ 2 < 0 𝖯𝗌 n m ( x , γ 2 ) is the oblate angular spheroidal wave function. If γ = 0 , 𝖯𝗌 n m ( x , 0 ) reduces to the Ferrers function 𝖯 n m ( x ) : … 𝖯𝗌 n m ( x , γ 2 ) has exactly n m zeros in the interval 1 < x < 1 . …
2: 30.6 Functions of Complex Argument
The solutions
𝑃𝑠 n m ( z , γ 2 ) ,
𝑃𝑠 n m ( z , 0 ) = P n m ( z ) ,
30.6.3 𝒲 { 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) } = ( 1 ) m ( n + m ) ! ( 1 z 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ,
3: 30.1 Special Notation
The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively. … Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and
S m n ( 1 ) ( γ , x ) = d m n ( γ ) 𝖯𝗌 n m ( x , γ 2 ) ,
4: 30.7 Graphics
See accompanying text
Figure 30.7.5: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.6: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.7: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.8: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
See accompanying text
Figure 30.7.9: 𝖯𝗌 2 0 ( x , γ 2 ) , 1 x 1 , 50 γ 2 50 . Magnify 3D Help
5: 30.10 Series and Integrals
Integrals and integral equations for 𝖯𝗌 n m ( x , γ 2 ) are given in Arscott (1964b, §8.6), Erdélyi et al. (1955, §16.13), Flammer (1957, Chapter 5), and Meixner (1951). …
6: 30.5 Functions of the Second Kind
30.5.4 𝒲 { 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) } = ( n + m ) ! ( 1 x 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ( 0 ) ,
7: 30.16 Methods of Computation
If | γ 2 | is large, then we can use the asymptotic expansions referred to in §30.9 to approximate 𝖯𝗌 n m ( x , γ 2 ) . If λ n m ( γ 2 ) is known, then we can compute 𝖯𝗌 n m ( x , γ 2 ) (not normalized) by solving the differential equation (30.2.1) numerically with initial conditions w ( 0 ) = 1 , w ( 0 ) = 0 if n m is even, or w ( 0 ) = 0 , w ( 0 ) = 1 if n m is odd. If λ n m ( γ 2 ) is known, then 𝖯𝗌 n m ( x , γ 2 ) can be found by summing (30.8.1). …
30.16.9 𝖯𝗌 n m ( x , γ 2 ) = lim d j = 1 d ( 1 ) j p e j , d 𝖯 n + 2 ( j p ) m ( x ) .
8: 30.18 Software
  • SWF2: 𝖯𝗌 n m ( x , γ 2 ) .

  • 9: 30.11 Radial Spheroidal Wave Functions
    §30.11(v) Connection with the 𝑃𝑠 and 𝑄𝑠 Functions
    30.11.10 K n m ( γ ) = π 2 ( γ 2 ) m ( 1 ) m a n , 1 2 ( m n ) m ( γ 2 ) Γ ( 3 2 + m ) A n m ( γ 2 ) 𝖯𝗌 n m ( 0 , γ 2 ) , n m even,
    30.11.11 K n m ( γ ) = π 2 ( γ 2 ) m + 1 ( 1 ) m a n , 1 2 ( m n + 1 ) m ( γ 2 ) Γ ( 5 2 + m ) A n m ( γ 2 ) ( d 𝖯𝗌 n m ( z , γ 2 ) / d z | z = 0 ) , n m odd.
    30.11.12 A n m ( γ 2 ) S n m ( 1 ) ( z , γ ) = 1 2 i m + n γ m ( n m ) ! ( n + m ) ! z m ( 1 z 2 ) 1 2 m 1 1 e i γ z t ( 1 t 2 ) 1 2 m 𝖯𝗌 n m ( t , γ 2 ) d t .
    10: 30.8 Expansions in Series of Ferrers Functions
    30.8.1 𝖯𝗌 n m ( x , γ 2 ) = k = R ( 1 ) k a n , k m ( γ 2 ) 𝖯 n + 2 k m ( x ) ,
    30.8.2 a n , k m ( γ 2 ) = ( 1 ) k ( n + 2 k + 1 2 ) ( n m + 2 k ) ! ( n + m + 2 k ) ! 1 1 𝖯𝗌 n m ( x , γ 2 ) 𝖯 n + 2 k m ( x ) d x .